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T
he recent bilingual publication of The
Mathematical Writings of Évariste Ga-
lois by Peter M. Neumann [6] will make

Galois’s own words available to a vast

new audience of students of modern

algebra. I have long advocated reading the original

works of great mathematicians, but even with the

advantage of Neumann’s extensively annotated

transcription and translation it will be difficult

for modern readers to connect Galois theory as

they know it with Galois’s original presentation of

it in his famous First Memoir (Premier Mémoire),

entitled “On the conditions for the solvability of

equations by radicals”.

The First Memoir was submitted to the Paris

Academy of Sciences in January of 1831, only to

be rejected. With the benefit of hindsight, it is easy

to condemn this rejection as an epic misjudgment.

However, anyone who has studied the memoir will

sympathize with the decision, especially in view

of the fact that the referees recommended that

the young author—Galois was just nineteen at

the time—make his presentation clearer and more

expansive. They could not have imagined that this

would be their last chance to recognize the merit

of the work of an unparalleled genius.

In this paper, I have tried to explain the First

Memoir to modern readers, going through it

proposition by proposition. The most important

proposition, and the one I most emphasize, is

Proposition 2, the one about which Galois wrote in

the margin, “There is something to be completed

in this proof. I do not have the time” (the sec-

tions “Proposition 2” and “Proposed Revision of
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Proposition 2” below). My interpretation suggests

how Galois might have stated and proved it given

a little more time. This revised Proposition 2,

combined with Proposition 1 (which I also revise,

but only to make the statement Galois surely in-

tended), contains the equivalent of what is now

called the fundamental theorem of Galois theory.

I do not assume that the reader has ready ac-

cess to the First Memoir and have tried to make

the explanations stand on their own, but serious

readers would be foolish to be satisfied with my

rewarmed version of Galois’s theory. The original,

however flawed and incomplete it may be, is indis-

putably one of the most valuable and insightful

documents in the history of mathematics.

The Ground Field

At the beginning of the First Memoir, Galois

establishes what would be called the ground field
today. He states that the polynomials (he calls them

equations) to be solved may have coefficients that

are not rational numbers, but that nonetheless

the coefficients of the polynomial to be solved

(or, as would be said today, the polynomial to

be factored into linear polynomials) will be called

rational quantities. Explicitly, he says, “We shall

call rational every quantity which can be expressed

as a rational function of the coefficients of the

[polynomial] together with a certain number of

quantities adjoined to the [polynomial] and agreed

arbitrarily.”

I will denote by K a field which is the field

of rational numbers Q to which a finite number

of irrational quantities, either algebraic or tran-

scendental, are adjoined.1 This field K, “agreed

1At first, it is simplest to take the ground field K to be Q ,
and this case exhibits all the features of the general case.
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arbitrarily”, will be the field of quantities that

are considered to be rationally known in Propo-

sition 1. In the course of the solution of a given

polynomial, other quantities will necessarily be

adjoined.

Lemma 1

Galois’s first lemma states that “An irreducible

[polynomial] cannot have any root in common

with a rational [polynomial] without dividing it.”

He essentially leaves the proof to the reader,

saying only, “For the greatest common divisor

of the irreducible [polynomial] and the other

[polynomial] will again be rational; therefore, etc.

[sic].”

The notion of a greatest common divisor of two

polynomials which he cites here is of fundamental

importance to the whole theory. Strictly speaking,

one can’t speak of the greatest common divisor of

two polynomials in one variable with coefficients

in K but only of a greatest common divisor, which

is a polynomial that divides them both and which,

among all such common divisors, has maximum

degree. Given one greatest common divisor of

two polynomials, the others are all obtained by

multiplying by nonzero constants.

The construction of a greatest common divisor

of two given polynomials with coefficients in K

can be carried out in various ways. Galois gives

no hint as to how he would find a greatest

common divisor, but all methods come down

to the following simple idea, often called the

Euclidean algorithm for polynomials.

A common divisor of f (x) and g(x) is obvi-

ously a common divisor of f (x) and r(x) when

deg f (x) ≤ degg(x) and r(x) is the remainder

when g(x) is divided2 by f (x) to find polynomials

q(x) and r(x), with deg r(x) < deg f (x), for which

g(x) = q(x)f (x) + r(x), provided, of course, that

f (x) 6= 0. Conversely, every common divisor of

f (x) and r(x) is also a common divisor of f (x) and

The possible inclusion of transcendental quantities is indi-
cated by Galois’s reference to “algebraic equations” in the
remarks that precede his proof of Proposition 1. He surely
means polynomials whose coefficients are transcendental
or, to put it colloquially, whose coefficients are letters, not
numbers.
2Unless the divisor is monic, division of polynomials can
become cumbersome. Since multiplication of g(x) by a
nonzero element of the ground field does not affect its
greatest common divisor with f (x), one can simplify the
division by multiplying g(x) by a suitable power of the lead-
ing coefficient of f (x). In this way, one never needs to do
any divisions in the ground field and the algorithm pro-
duces a greatest common divisor whose coefficients are in
the ring generated in K by the coefficients of f (x) and g(x).
If, for example, K = Q and f (x) and g(x) have integer
coefficients, then a greatest common divisor found by this
method will have integer coefficients.

g(x). If deg f (x) > degg(x), a common divisor of

f (x) and g(x) is a common divisor of r(x) and

g(x) where r(x) is the remainder when f (x) is

divided by g(x), provided, again, that g(x) 6= 0. In

this way, the common divisors of f (x) and g(x)

are found to coincide with the common divisors

of two polynomials whose total degree is less than

the total degree deg f (x) + deg g(x) of f (x) and

g(x), provided neither f (x) nor g(x) is zero. When

the degree of the zero polynomial is considered

to be −∞, this procedure allows one to reduce the

problem of finding the common divisors of f (x)

and g(x) to the same problem for a pair of polyno-

mials whose total degree is reduced, unless that

total degree is −∞. Thus, since the total degree

cannot be reduced more than deg f (x)+ degg(x)

times without reaching −∞, the common divisors

of f (x) and g(x) coincide with the common divi-

sors of two polynomials constructed by iterating

this algorithm, one of which is zero. Let d(x)

denote the one that is not zero. Then the common

divisors of f (x) and g(x) coincide with the divisors

of d(x). In particular, d(x) is a greatest common

divisor of f (x) and g(x).

As for the proof of Galois’s Lemma 1, note first

that Galois is certainly including roots that are

not in the ground field K, because a polynomial

that is irreducible over K has no roots in K unless

its degree is one, in which case the lemma is

elementary. If there is an extension of K in which

f (x) and g(x) have a common root, then there is

an extension of K over which f (x) and g(x) have

a common divisor of degree greater than zero.

The algorithm for finding a greatest common

divisor of f (x) and g(x) does not make any use

of the extension of K, so in this case there must

be a common divisor of f (x) and g(x) of degree

greater than zero with coefficients inK. When f (x)

is irreducible, it follows that this common divisor

is a nonzero multiple of f (x) (the only divisors of

f (x) are nonzero constants and nonzero multiples

of f (x)), so f (x) divides g(x), as was to be shown.

The Precious Galois Principle

As will be explained below, Galois’s Lemmas 2 and

3 combine to prove that, for any given polynomial

f (x) with coefficients in K, there is an irreducible

polynomial G0(X) with coefficients in K with the

property that the field K(V) obtained by adjoining

one root V of G0(X) to K is a field over which

both f (x) and G0(X) can be written as products

of linear factors. That is, Lemmas 2 and 3 imply a
construction of a normal extension of K which is a
splitting field of f (x).

Galois’s proof—or, rather, the proof indicated

by Galois, because an indication is all he gives—

presents a somewhat circular argument, insofar

as he tacitly assumes that there is such a thing
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as a splitting field of f (x) before proceeding

to construct one! This is the fallacy that Gauss

accused his predecessors of having committed

when he was explaining the necessity for his new

(in 1799) proof that a polynomial with integer

coefficients splits into linear factors over the field

of complex numbers, the statement that is often

called the fundamental theorem of algebra. He said

that his predecessors had based their arguments

on the assumption that a polynomial with integer

coefficients had roots in some sense and that it

was possible to compute with them; for that reason

he held the previous proofs to have been invalid.

The same objection applies to Galois’s Lem-

mas 2 and 3. Their proofs assume that the given

polynomial has roots and that computations with

the roots can be carried out. But in Galois’s case

the objection is far less damaging, because Galois

was not just proving that one could compute with

the roots—in which case it would have been fa-

tal to assume at the outset that it was possible

to compute with the roots—but he was giving a

construction that explained exactly how to com-

pute with the roots. That is, he proved that if it is
possible to compute with the roots of f (x) in a con-
sistent and rigorous way, then the field of rational
functions of these roots is isomorphic to a field of
the above form K(V).

Not until several decades later did Kronecker

prove the existence of a splitting field for a given

polynomial in a way that would suffice to put

Galois’s construction on a sound footing. When

he did so, he built on what he called das köstliche
Galoische Princip (the precious Galois principle),

by which he meant the construction implied by

Lemmas 2 and 3 of Galois’s memoir.3

Galois’s Construction

Lemma 2 states that, for any polynomial f (x) with

coefficients in K that is without multiple roots,

one can find a rational function V of the roots

of f (x) with the property that no two values of

V that are obtained by permuting the roots of

f (x) in V are equal. He even says that the linear

function V = Aa+Bb+Cc+·· · of the roots a, b,

c, . . . of f (x), in which the coefficients A, B, C, . . .

are integers, has this property when the integer

coefficients are suitably chosen.

He gives no proof at all, but—provided one

does not question what the roots of f (x) are or

how one computes with them—the lemma can be

proved in the following way. When the integer

coefficients A, B, C, . . . that are to be determined

are regarded as variables, V = Aa+Bb+Cc +·· ·
becomes a linear polynomial in these variables

whose coefficients are the roots of f (x). There are

3See [3].

in fact m! such linear polynomials, where (as in

Galois’s notation) m is the degree of f (x), one

for each permutation of a, b, c, . . . . By virtue

of the assumption that f (x) has no multiple

roots, the difference of any two of these m! linear

polynomials is a nonzero linear polynomial inA, B,

C, . . . . Therefore, the product of allm!(m!−1) such

differences is nonzero; call it ∆. The coefficients

of ∆ are polynomials in the roots of f (x), but

they are symmetric polynomials in these roots,

and, as was well known and understood long

before Galois’s time, any symmetric polynomial

in the roots of a polynomial can be expressed as

a polynomial in its coefficients. Therefore, ∆ is a

nonzero polynomial in m variables A, B, C, . . .

with coefficients in K. It remains only to show that

integer values can be assigned to the variables

in a nonzero polynomial with coefficients in K

in such a way that the polynomial assumes a

nonzero value, which is easily done by induction

on the number of variables in the polynomial, and

Lemma 2 follows.

Lemma 3 then makes the very important state-

ment that each root of f (x) can be expressed

rationally in terms of V when V is chosen as in

Lemma 2 (and when, as required by Lemma 2, f (x)

has no multiple roots). In other words, the field

K(V) is a splitting field of f (x). In this case, Galois

does sketch a proof:

Let X be a new variable, and let G(X) be the

product of allm! factorsX−V whereV ranges over

them! versions of V . For simplicity, assume V has

the formAa+Bb+Cc+·· · where the coefficients

A, B, C, . . . are integers. The coefficients of G(X),

being symmetric functions of the roots of f (x),

are in K.

By the construction of V , G(X) has m! distinct

roots. The factors of G(X) can be partitioned into

m subsets by putting two of them in the same

subset when they have the same root of f (x) in the

first position with the coefficient A. Then G(X)

becomes a product of m factors, which can be

expressed in the form F(X,a), F(X, b), F(X, c),

. . . where F(X,Y) is a polynomial in two variables

with coefficients in K, namely, the polynomial

F(X,Y) that is found in the following way. First,

let the product (X−Aa−Bb−Cc−·· · )(X−Aa−
Bc − Cb − ·· · ) · · · of the (m − 1)! factors X − V
of G(X) in which a occurs in the first position

be written as a polynomial in X and a by making

use of the fact that every symmetric polynomial

in the roots b, c, . . . of f (x) other than the root a

can be expressed rationally4 in terms of a. Then

4This basic fact about symmetric polynomials follows from

the formula (x − b)(x − c) · · · = f (x)
x−a , in which the

coefficients on the left side are the elementary symmetric
polynomials in b, c, . . . , and the coefficients on the right
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F(X,Y) is the polynomial found by writing Y

in place of a in the resulting polynomial. Thus,

G(X) = F(X,a)F(X, b)F(X, c) · · · . (The right side

is a polynomial with coefficients in K because

symmetric polynomials in the roots a, b, c, . . . of

f (x) have values in K.)

Then a greatest common divisor of F(V , x)

and f (x) can be written, on the one hand, as a

polynomial with coefficients inK(V), because both

F(V , x) and f (x) can be regarded as polynomials

in x with coefficients in K(V), but, on the other

hand, it has exactly one root a because F(V , a) =
0 (as follows from the fact that F(V , a) is a

product of (m − 1)! factors V − V ′ where V ′

ranges over all (m − 1)! versions of V in which

the root a comes first, and just one of these

factors is zero), but F(V , b) 6= 0 for all other

roots b of f (x) (because V is a simple root

of G(X) = F(X,a)F(X, b)F(X, c) · · · ). Thus, this

greatest common divisor has degree one, so it is of

the form φ(V)x+ψ(V) where φ(V) 6= 0. For the

quantities φ(V) and ψ(V) in K(V) that are found

in this way, φ(V)a+ψ(V) = 0, which shows that

a = −ψ(V)/φ(V) is in K(V).

Similarly, a quotient −ψ1(V)/φ1(V) can be

constructed that expresses rationally in terms of

V the root of f (x) that occurs in the second place

of V , with the coefficient B, by grouping the factors

X − V of G(X) according to the root that appears

in the second place of V . Thus, b is in K(V). In

the same way, one finds that all roots of f (x) are

in K(V), from which it follows as well that all

roots of G(X) are in K(V) for any root V of G(X)

(because these roots are rationally expressible in

terms of the roots of f (x)).

(Galois scrupulously observes that this

conclusion—all roots of f (x) can be expressed

rationally in terms of a single quantity—is indi-

cated, without proof, in one of Abel’s posthumous

works. He is probably referring to [1]. As to the

priority of the discovery, however, he wrote in

another place ([6], pp. 238–239) that “. . . it would

be easy for me to prove that I did not even

know the name of Abel when I presented my

first research on the theory of equations to the

Institute. . . ”).

Computation in K(V)

Let G(X) = G0(X)G1(X)G2(X) · · · be the fac-

torization5 of G(X) into factors irreducible over

side are polynomials in a by virtue of the remainder theo-
rem, which states that the remainder when f (x) is divided
by x− a is f (a), which is zero.
5The factorization of G(X) into irreducible factors is fairly
easy to carry out when K is Q or a field obtained from Q

by adjoining transcendental quantities (variables), but the
general factorization problem is more difficult. See Part 1
of [2].

K. Each of these irreducible factors is a Galois

polynomial—that is, adjunction of one of its roots

constructs a field over which it splits into linear

factors—because adjunction of any one root V to

K gives a field in which f (x) has m roots a, b, c,

. . . , which means it gives a field in which G(X) has

m! roots Aa + Bb + Cc + ·· · .

In particular, a splitting field of f (x) can be con-

structed by adjoining one rootV of one irreducible

factor of G(X) to K, an observation that answers

the question, how can one do computations with
the roots of a given polynomial f (x)?—provided

one assumes that such computations are possible

in the first place—because computations in the

field K(V) are quite simple. If (as in Galois’s nota-

tion) n is the degree of the irreducible factors of

G(X) over K, then every quantity in K(V) can be

written in one and only one way as a polynomial

in V of degree less than n with coefficients in K.

In other words, writing a quantity in K(V) as a

polynomial in V of degree less than n with coeffi-

cients in K puts that quantity in a canonical form
with the property that two quantities in K(V) are

equal only if their canonical forms are identical.

Two quantities in canonical form can be added in

the obvious way, and they can be multiplied by

multiplying them as polynomials and then using

the relation G0(V) = 0 to reduce the degree of

the product until it is less than n = degG0, where

G0(X) is the irreducible factor of G(X) of which V

is a root. Finally, the reciprocal of a quantity φ(V)

in canonical form can be found, provided it is not

zero, by combining the algorithm for finding a

greatest common divisor of φ(X) and G0(X) with

the fact that G0(X) is irreducible to find6 that a

nonzero constant c in K can be written in the

form α(X)φ(X)+ β(X)G0(X), which implies that
1

φ(V)
= α(V)

c
; this reciprocal ofφ(V) is in canonical

form becauseα(X) can be assumed to have degree

less than n = degG0(X).

Automorphisms

The modern abstract notion of an automorphism

of a field may have been far removed from Ga-

lois’s way of thinking, but the representation of

the splitting field of f (x) as a field extension

obtained by adjoining one root of G0(X) provides

the equivalent of what is now called the Galois

group of that field extension, which is a group of

automorphisms.

6All polynomials with coefficients in K generated by the al-
gorithm for finding a greatest common divisor ofφ(x) and
G0(X) can be written as linear combinations of φ(x) and
G0(X), so a greatest common divisor can be so written.
In the present case, the greatest common divisors are the
nonzero constants, because G0(X) is irreducible and the
degree of φ(X) is less than n = degG0(X).
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The connection is simply the following. As

was seen in the preceding section, every rational

function of the roots of f (x) with coefficients in K

has a unique representation in the canonical form

φ(V), whereφ is a polynomial of degree less than

n = degG0(X) with coefficients in K. Moreover,

since this statement implies that all roots of G(X)

can be written in this same canonical form, there

are exactly n roots V of G0(X) in K(V). Galois

calls them V , V ′, V ′′, . . . , V (n−1). The mapping

which assigns to a quantity φ(V) in the extension

field K(V) the quantity φ(V (i)), which is another

quantity in K(V), is an automorphism of K(V)

for each of the n roots V (i) of G0(X) (because V

and V (i) satisfy the same defining relation), and

these n automorphisms of K(V) constitute what

is called the Galois group of K(V) over K today.

Galois deals only with the action of these

automorphisms on the list of roots a, b, c, . . . of

f (x), and he represents that action in a very specific

way. What he calls “the group of the equation”

(before the first scholium of Proposition 1) is not

a group at all in the modern technical sense of

the word group, but simply an n ×m array (see

Figure 1), where the number of rows n is the

degree of G0(X) and the number of columns m

is the degree of the polynomial f (x) whose roots

are to be constructed. (Galois adds an (m + 1)st

column on the left giving captions for the rows.)

The first row contains the roots a, b, c, . . . of f (x)

in K(V), listed in some order, and the subsequent

rows list the same roots in the order in which they

appear after the automorphism that carries V to

V (i) is applied. (Galois writesφ(V),φ1(V),φ2(V),

. . . for the first row, but states at the outset that

these are to be seen not as polynomials in V but

as roots of f (x). Similarly, the symbols φ(V (i)),

φ1(V
(i)), φ2(V

(i)), . . . in subsequent rows are no

doubt to be seen as roots of f (x).)

In the statement of Proposition 1, something

very close to the notion of an automorphism of

the splitting field is implied.

Proposition 1

Galois’s Proposition 1 characterizes the “group

of the equation”, represented by the n ×m array

above, in the following way:

Let a [polynomial] be given of which them roots
are a, b, c, . . . . There will always be7 a group of
permutations of the letters a, b, c, . . . which will
enjoy the following property:

1. Every function of the roots invariant under the
substitutions of this group will be rationally known,
and

2. conversely, every function of the roots that is
rationally determinable will be invariant under the
substitutions.

In both 1 and 2, the manuscript shows that

Galois first wrote “permutations” and changed

it to “substitutions”, but he let “permutations”

stand in the phrase “group of permutations,”

which strongly suggests that the group he had

7Galois first wrote, “One will always be able. . . ” and
crossed it out to write, “There will always be. . . ”. His ap-
proach to algebra led to many more such conflicts between
constructive and nonconstructive formulations.

(V) φ(V) φ1(V) . . . φm−1(V)

(V ′) φ(V ′) φ1(V
′) . . . φm−1(V

′)

(V ′′) φ(V ′′) φ1(V
′′) . . . φm−1(V

′′)

. . . . . .

(V (n−1)) φ(V (n−1)) φ1(V
(n−1)) . . . φm−1(V

(n−1))

Figure 1. This m× n array (with an (m+ 1)st column added on the left) is the format in which Galois

presented what he called the group of the equation f (x) = 0. (However, Galois wrote φ’s without paren-

theses as φV , φ1V , etc. His only parentheses are in the column on the left and the superscripts in the

bottom row.) Here V is a quantity with the property that all roots a, b, c, …, of f (x) can be expressed

rationally in terms of V , and V ′, V ′′, …, V (n−1) are the other roots of the irreducible polynomial G0(X) of

which V is a root. Each of the n rows of the array lists the m roots of f (x) in some order. (See examples

in the section “Solution of the Quartic”.) Every V can be expressed rationally in terms of every other V .

The order of the roots in the first row determines their order in all others in the following way. Write

each root as a function of V and let these functions be given the names φi(V) shown in the first row, in

that order. Thenφi(V
′) is also a root of f (x); this is the root that is to be entered in the ith column of the

second row, and the other rows are to be filled in similarly. It should be emphasized, however, that Galois

saw the entries of the array as roots of f (x), not as polynomials in the various V ’s. In modern terms, the

field K(V) has n automorphisms V ֏ V (j) , and the table shows the way in which these automorphisms

act on the roots of f (x).
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in mind in the statement of the proposition was

simply the n×m array listing the roots in different

orders, which is not a group at all in the modern

sense. Very likely this “group of permutations”

was for him a constructive presentation of the

more abstract notion of a group (in the modern

sense) of substitutions of the roots, namely, the

substitutions that transform any one row of the

array into any other.8

The purpose of Proposition 1 is clear, but

its statement is somewhat flawed. Galois has

constructed the “group of the equation” and he

wants to characterize that group in a way that

is independent of the choices that were made

in the construction. The flaw is that he tries to

characterize the substitutions in the group in

terms of the way that they act on functions of

the roots, when in fact, as the proposition itself

implies, a substitution of the roots does not act

on functions of the roots unless it is in the group.

(For example, if a, b, and c are the roots of

x3 + x2 − 2x− 1, numerical approximations to the

roots can be used to find that a2b + b2c + c2a is

either 3 or −4 depending on the order in which

the roots are listed. If an order is chosen in which

a2b + b2c + c2a = 3, then interchanging a and b

changes the version of the function of the roots

on left side from 3 to −4, but leaves the version

on the right side unchanged, so this interchange

does not act on this “function”.)

What characterizes the substitutions described

by the group is not the way that they act on ratio-

nal functions of the roots, but the fact that they do
act on rational functions of the roots. In modern

terms, they are substitutions that are restrictions

of automorphisms of the splitting field, which

is to say that they are transformations of the

splitting field that preserve its structure. In lan-

guage closer to Galois’s: A substitution of the roots
is in the group of f (x) if and only if any relation
F(a, b, c, . . . ) = 0 among the roots of f (x), where
F(a, b, c, . . . ) is a rational function of the roots of
f (x), remains valid when the substitution is applied
to the variables a, b, c, . . . in F(a, b, c, . . . ).

In other words, Galois surely meant something

like:

Proposition 1 (Revised). Let a [polynomial] be
given of which the m roots are a, b, c, . . . . There
will always be a group of permutations of the
letters a, b, c, . . . which will enjoy the following
property:

1. Every function of the roots F(a, b, c, . . . ) that
has a rationally known value has the same ratio-
nally known value when a substitution of this group
is applied, and

8See [6], pp. 22–23.

2. conversely, every function of the roots
F(a, b, c, . . . ) that satisfies F(a, b, c, . . . ) = F(Sa,
Sb, Sc, . . . ) for all substitutions S in this group will
have a rationally known value.

Proof. When F(a, b, c, . . . ) is written in canonical

form as a polynomial in V of degree less than n

with coefficients in K, the proposition becomes

the statement that such a polynomial φ(V) is un-

changed by all substitutions V ֏ V (i) if and only if

it has degree zero. Obviously it is unchanged if it

has degree zero. Conversely, if it is unchanged by

all substitutions, then it is equal to 1
n

∑n
i=1φ(V

(i)),

which is in K because it is a symmetric function

of the roots V (i) of G0(X), a polynomial whose

coefficients are in K. �

Proposition 2

Galois’s Proposition 2 states:

If one adjoins to a given equation the root r of
an irreducible auxiliary equation, (1) one of two
things will happen: either the group of the equa-
tion will not be changed or it will be partitioned
into p groups, each belonging respectively to the
proposed equation when one adjoins to it each of
the roots of the auxiliary equation, and (2) these
groups will enjoy the remarkable property that one
will pass from one to another by operating on all
the permutations of the first with one and the same
substitution of letters.

This proposition contains an obvious flaw that

results from a hasty reworking of the memoir,

probably in the last hours before the duel: In part

(1) he refers to pwithout having said whatp is. The

manuscript shows that in the original statement p

denoted the degree of the auxiliary equation, and

it was assumed to be prime. In the revision, Galois

was dropping the assumption that the degree of

the auxiliary equation was prime and failed to

notice that in deleting the words “of prime degree

p” before (1) he was deleting the definition of p.

But a less obvious flaw results from the re-

working as well. The one-to-one correspondence

between the “groups” in the partition and the

roots of the auxiliary equation is lost. When p was

assumed prime, this equality was already just one

of the two possibilities (the other being that “the

group of the equation will not be changed”), but

when p is not prime the equality is lost altogether,

as will be seen in the next section, and the number

of “groups” is determined in a quite different way.

The removal of the assumption that the degree

of the adjoined quantity is prime is an important

broadening of the theory, but in the form Galois

hastily gave it Proposition 2 garbles the descrip-

tion of the way in which an adjunction partitions

the group of f (x). Certainly he knew better.
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Two other aspects of Proposition 2 pose ob-

stacles for modern readers, because they appear

to be flaws even though they are not. First, part

(2) suggests to a modern reader that Galois is

saying that the subgroup corresponding to the

adjunction is a normal subgroup, which is not at

all the case. In fact, (2) only says that the “groups”

in the partition in (1) (which are of course not

groups in the modern sense) describe conjugate

subgroups (in the modern sense) of the group of

f (x). When it is stated in this way, the property

described in (2) seems far less “remarkable”, at

least to a modern reader.

Second, when he says in (1) that adjoining one
root partitions the group of f (x) into p groups,

each belonging to the adjunction of a different

root of the auxiliary equation, a modern reader is

naturally confused. If only one root was adjoined,

how can the partition involve the adjunction of

other roots? This question is answered in the next

section.

Proposed Revision of Proposition 2

It was in connection with the proof of Proposition 2

that Galois made the marginal note, “Il y a quelque

chose à compléter dans cette démonstration. Je

n’ai pas le temps”. (There is something to be

completed in this proof. I do not have the time.)

This statement and the apparent haste of the

handwriting have led editors of the memoir to

conclude that the revision of Proposition 2 was

made on the night before the duel ([6], pp. 158–

159). Neumann calls the note a cri de coeur ([6],

p. 161); it is certainly a major part of the drama

and tragedy of the Galois story.

As is explained above, there is indeed some-

thing to be completed in Proposition 2. When the

degree of the auxiliary equation is a prime p, the

proposition is correct and plays an important role

in the later propositions relating to solution by

radicals. However, Galois’s hasty revision shows

that he was ready to drop the assumption of pri-

mality and felt he needed only a little more time

to do it accurately.

The scholium (a word that is rarely used today,

meaning an amplification of the proposition under

discussion) that ends Proposition 1 states that “the

substitutions are independent even of the number

of roots,” which implies that Galois contemplated

changing the number of roots of f (x). What could

he have meant by this?

Changing the number of roots would mean

changing the degree of f (x). Surely there would

be no point in saying that Proposition 1 is inde-

pendent of the degree of f (x), so he cannot have

meant this. On the other hand, what could it mean

to say that the substitutions are independent of

the number of roots when the substitutions are

substitutions of these very roots?

The most convincing interpretation, it seems

to me, is that Galois was contemplating adding

more columns to the n ×m array that describes

the “group” (m is of course the number of roots),

which would mean changing f (x) to a polynomial

with coefficients in K that is divisible by f (x).

This suggests that, in order to study f (x) as

a polynomial to which a root of an irreducible

auxiliary polynomial g(x) is adjoined, one might

find the group of f (x)g(x) instead of the group of

f (x) (unless f (x) and g(x) have a root in common,

in which case, by Lemma 1, g(x) is already a factor

of f (x) and the quantity to be adjoined is already

a root of f (x)). Since, as the scholium points

out, Proposition 1 means that the substitutions

in the “group of f (x)” depend only on the roots

a, b, c, . . . themselves, they can be read off from

the enlarged array (which may also contain more

rows but which, by Proposition 1, can indicate no

additional substitutions of the roots of f (x)) as

well as from the original one.

In short, the question that is answered by

Proposition 2, “how is the group of f (x) reduced

if the field of known quantities K is extended

to include a new quantity?” will be answered in

the general case if it is answered in the special

case in which the quantity that is adjoined is a

root of f (x). In this case, however, the answer can

be seen clearly in terms of the n ×m array that

describes the group of f (x), as the proof below

shows. I believe that Galois would have used an

argument like this one to “complete” his proof of

the proposition.

Proposition 2 (Revised). If one adjoins to a given
equation one of its roots a, (1) the group of the
equation will be partitioned into k groups, each be-
longing respectively to the proposed equation when
one adjoins to it one of the roots to which the substi-
tutions of the group carry a, and (2) these groups
will enjoy the (remarkable?) property that one will
pass from one to another by operating on all the
permutations of the first with one and the same
substitution of letters.

The proof that follows is suggested by the proof

Galois indicated for Lemma 3 (see above), as well

as the one he indicated for Proposition 2.9

Proof. Since rearranging the rows or columns of

the n×m array does not change the substitutions

that it describes, there is no loss of generality in

assuming that the root a that is adjoined is the

9Proposition 2 posed difficulties for Joseph Liouville as he
worked through Galois’s memoir to validate it. His proof of
it departed substantially from Galois’s indications. See [6],
pp. 159–161.
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root in the upper left corner of the array. Let k be

the number of different roots of f (x) that occur

in the first column, and let them be a, a′, a′′, . . . ,
a(k−1). Again, since the order of the rows is im-

material, the rows can be arranged as k blocks

of rows, listing first all rows that begin with a,

then all rows that begin with a′, and so forth. The

proposition will be proved by showing that each

block presents “the group of f (x)” after the corre-

sponding a(i) is adjoined.

Part (2) of the proposition is simply the obser-

vation that a substitution which carries a row be-

ginning with a(i) to a row beginning with a(j) car-

ries all rows beginning with a(i) to rows beginning

with a(j). In particular, k divides n, and the quo-

tient, call it n′, is the number of rows in each of

the k blocks.

In the above proof of Lemma 3, a polyno-

mial F(X,Y) in X and Y with coefficients in K

was constructed with the property that, for any

root V of G0(X), the polynomials F(V , Y) and

f (Y) have only one root in common, namely,

the root a of f (x) that is in the first position of

V = Aa+Bb+Cc+·· · . Let H(X,Y) be the monic

greatest common divisor of G0(X) and F(X,Y)

when they are treated as polynomials in X whose

coefficients are rational functions in Y with coef-

ficients in K. (The greatest common divisors are

polynomials in X whose coefficients are rational

functions of Y . The monic greatest common di-

visor is the one whose leading coefficient is 1.)

For any root a(i) that appears in the first column

of the n ×m array, the roots V of H(X,a(i)) are

the roots that G0(X) and F(X,a(i)) have in com-

mon, which are simply the roots of G0(X) that

correspond to rows in which a(i) appears in the

first column. Thus, G0(X) has the factorization

H(X,a)H(X,a′)H(X,a′′) · · · , which partitions

the rows of the n × m array into k blocks, each

n′ ×m, as above. What is to be shown is that each

factor H(X,a(i)), which of course has coefficients

in K(a(i)), is irreducible over this field, so that it

is a factor of G(X) irreducible over K(a(i)) and

its roots V therefore determine the rows of “the

group of f (x)” when the known quantities are

those in K(a(i)).

Adjunction of a(i) gives an extension of K of

degree k because a(i) is a root of a polynomial of

degree k with coefficients in K (namely,
∏k−1
i=0 (x−

a(i)), which has coefficients in K by Proposition 1)

that is irreducible over K (because leaving out any

factor of
∏
(x − a(i)) gives a polynomial whose

coefficients are not in K by Proposition 1). There-

fore, K(V), which is an extension of degree n of

K that contains a(i), is an extension of K(a(i)) of

degree
n
k
= n′, which is the degree of H(X,a(i)). If

H(X,a(i)) were reducible, then V would be a root

of a polynomial with coefficients in K(a(i)) whose

degree was less than n′, and the degree of K(V)

over K would be less than n. Therefore, H(X,a(i))

is irreducible overK(a(i)), as was to be shown. �

The Fundamental Theorem of Galois Theory

In the previous section, the device of changing

f (x) to a polynomial of higher degree that is

divisible by f (x) served two purposes. First, it

created a universe—the splitting field of the new

polynomial—that contained the adjoined quantity

along with the roots of f (x), and, second, it made

possible the simple description of the proposition

in terms of the partition of the n×m array into k

subarrays, each n′ ×m.

In modern Galois theory, the universe is de-

scribed as a normal extension of K—that is, the

splittingfieldofsomeunspecified f (x)—andtheel-

ementsof theGaloisgroupare regardedasabstract

automorphisms of that normal extension without

any specified way of describing them. In these

abstract terms, Proposition 2 says simply that the
adjunction of a quantity in a normal extension of K
to the ground field reduces the Galois group to the
subgroup that contains just those automorphisms
that leave the adjoined quantity unmoved. Since,

by Proposition 1, a quantity in the extension field

is “known” if and only if it is unmoved by the

permutations of the Galois group, and since the

“known” quantities become those in the subexten-

sion K(a), where a is the adjoined quantity, the

proposition takes the form:

Proposition 2 (Modernized). The subextension
K(a) of a normal extension of K obtained by ad-
joining a to K contains precisely those quantities
of the normal extension that are unmoved by
the same automorphisms that leave a unmoved.
Moreover, the number n′ of such automorphisms
is n
k
, where n is the order of the Galois group and

k is the number of distinct images of a under the
Galois group.

This proposition can be applied several times,

expanding the ground field with each step, to find:

Proposition. A subextension K(a1, a2, …, at) of a
normal extension obtained by adjoining t quanti-
ties a1, a2, …, at toK contains precisely those quan-
tities of the normal extension that are unmoved by
the automorphisms that leave all of a1, a2, …, at
unmoved. Moreover, the number n′ of such auto-
morphisms is n

k1k2···kt , where n is the order of the
original Galois group and each ki is the number
of distinct images of ai under automorphisms that
leave a1, a2, …, ai−1 unmoved.

This proposition constructs the smallest subex-

tension that contains a given (finite) set of

quantitiesa1,a2, …,at in the extension. In this way,
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it establishes a correspondence between subex-

tensions of a normal extension and subgroups of

its Galois group, the correspondence that is called

the fundamental theorem of Galois theory. This

version of the fundamental theorem underlies the

treatment of Galois theory that I gave in my book

Essays in Constructive Mathematics [2].

Proposition 3

Galois’s Proposition 3 states that if all roots of
an auxiliary equation are adjoined to K, then the
“groups” in Proposition 2 all describe the same sub-
stitutions of the roots. In modern terms, this is the

statement that normal extensions correspond to

normal subgroups, an observation that is often in-

cluded, appropriately enough, in the statement of

the fundamental theorem of Galois theory. Galois

offers no proof, saying a proof “will be found,”

and indeed the proof is not difficult.

Let a1, a2, …, at be the roots of a polynomial

with coefficients in K, and let them all lie in the

splitting field of some f (x). By Lemmas 2 and 3,

integers A1, A2, …, Ak can be chosen in such a

way that adjoining v = A1a1 +A2a2 + ·· · +Atat
adjoins each ai and therefore adjoins each v′

obtained from v by permuting the ai . Adjoining

a1, a2, …, at is the same as adjoining any of the

quantities v′ obtained by permuting the ai in v .

The “groups” in Proposition 2 in this case give

the substitutions that leave all quantities in K(v′)
unmoved, where the v′ are the other roots of the

irreducible polynomial of which v is a root. Since

K(v′) = K(v) for all these v′, the proposition

follows.

Proposition 4

Proposition 4 makes a strange statement about ad-

joining a “numerical” value of a [rational] function

of the roots. Perhaps Galois saw Proposition 4 as

necessary when Proposition 2 was still restricted

to adjunctions of prime degree, or perhaps he

had some conception of “numerical” values that I

am failing to understand, but in any case Propo-

sition 4 seems to me to be a special case of

Proposition 2 and does not seem to be important

to what follows.

Proposition 5

Galois adopted the classical Euclidean style10 in

which propositions could be either theorems or

problems. His first four propositions are labeled

“theorem”, but the fifth and seventh are “prob-

lems”, while the sixth is a “lemma”, and the eighth

is again a “theorem”. In Euclid, theorems are dis-

tinguished from problems by the fact that the

discussion of a problem concludes with “as was

10See [5], vol. 1, pp. 124–129.

to be done,” while a theorem ends with “as was to

be shown.” Galois does not follow Euclid in this,

but his discussions of problems are different from

his discussions of theorems. For example, Propo-

sition 5 is stated as the problem, “Under what

circumstances is an equation solvable by simple

radicals?” and his discussion of it ends with an

indication of a constructive method for determin-

ing whether a given f (x) is solvable by radicals by

analyzing the group of f (x). The method, essen-

tially, is to determine whether the group contains

a normal subgroup of prime index and, if so, to

determine whether that subgroup has a normal

subgroup of prime index, and so forth. The equa-

tion [polynomial] is solvable if and only if one can

find a succession of such normal subgroups of

prime index until a group of order one is reached.

The ideas and methods here are near enough

to the modern ones that they probably require

no further comment to be understandable to a

21st-century reader.

Solution of the Quartic

In his scholium to Proposition 5, Galois applies his

method to the solution of the general quartic, the

quartic polynomial f (x) = x4+Ax3+Bx2+Cx+D
in which the coefficients A, B, C, and D are letters.
In other words, the ground field K is the field

Q(A, B,C,D) of rational functions in A, B, C, and

D with integer coefficients. In Proposition 1 he

already stated, without proof, that the group of

the general (or, as he calls it there, the algebraic)

equation of degreem contains allm! permutations

of the roots. Therefore, it is to be shown that the

symmetric group S4 of permutations of the four

roots has a normal subgroup of prime index,

which in turn has a normal subgroup of prime

index, and so forth, until a group of order one

is reached. Galois accomplishes this by exhibiting

the successive normal subgroups.

The first subgroup, normal in S4, is the alternat-

ing group A4 of index 2. In Galois’s formulation,

it is described by a decomposition of the 24 per-

mutations of the roots a, b, c, d into two 12× 4

arrays, namely,

abcd bacd

badc abdc

cdab cdba

dcba dcab

acdb bcda

cabd cbad

dbac dabc

bdca adcb

adbc bdac

dacb dbca

bcad acbd

cbda cadb
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although he does not write them explicitly. What

makes this a decomposition that corresponds to

a normal subgroup is the fact that one array is ob-

tained from the other by the same substitution of

letters (namely, the interchange a ↔ b) at the same

time that they represent the same substitutions

of letters (namely, the even permutations).

The 12×4 array on the left can be decomposed

into three 4× 4 arrays, namely,

abcd acdb adbc

badc cabd dacb

cdab dbac bcad

dcba bdca cbda.

Again, one passes from any one of these three to

any other by the same substitution of letters (for

example, from the first to the second by leaving

a fixed and changing b to c, c to d, and d to

b), and all three represent the same substitutions

of the letters (namely, a 4-group, consisting of

the identity and the three compositions of two

disjoint 2-cycles). The first 4×4 array decomposes

as
abcd cdab

badc dcba

which again is a normal decomposition, and finally

the 2× 4 array on the left decomposes as

abcd badc

and the group is now a 1× 4 array.

According to Proposition 5, this analysis shows

that the general quartic is solvable by radicals.

Also according to Proposition 5, one can determine

actual adjunctions that reduce the group to a single

permutation. According to that proposition, what

is needed for the first step is a quantity that

is unchanged by even permutations of the roots

but not by all permutations of the roots. Such a

quantity, well known to algebraists long before

Galois’s time, is (a − b)(a − c)(a − d)(b − c)(b −
d)(c−d), a quantity11 often denoted by

√
∆ (where

∆ is its square, a symmetric polynomial in the

roots and therefore a polynomial in A, B, C and

D with integer coefficients) which is unchanged

by even permutations and whose sign is changed

by odd permutations. Therefore, by Proposition 5,

an adjunction that effects the first reduction of

the group from one in which n = 24 to one in

which n = 12 is the adjunction of a square root

of (
√
∆ − (−

√
∆))2 = 4∆, or, what is the same,

adjunction of a square root of ∆.

For the next adjunction, what is needed is a

quantity that is unmoved by the 4-group (the

substitutions that are represented by each of the

11It can be written as the determinant
√
∆ =

∣∣∣∣∣∣

1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣
.

In this form, it gives a convenient definition of even and odd
permutations.

three 4 × 4 arrays above) but has three distinct

images under the group A4. As is easily seen, the

three quantities (a+ b − c − d)2, (a− b+ c − d)2,

and (a−b−c+d)2 are invariant under the 4-group

and are permuted cyclically by A4. Therefore, one

can adjoin
√
−3 to Q(A, B,C,D,

√
∆) and then a

cube root of (p+αq+α2r)3, where p, q, and r are

these quantities and α = −1+
√
−3

2
is a cube root of

unity, to effect the needed reduction.

Next, a + b − c − d is unchanged by the two

elements of the 4-group represented by the two

2 × 4 arrays, but its sign is reversed by the other

two elements, so the recipe of Proposition 5 calls

for adjoining a square root of 4 times its square or,

what is the same, a square root of (a+ b− c − d)2
itself.

Finally, the sign of a−b+c−d is reversed by the

element other than the identity of the 2-element

group that remains, so the group is reduced to

a single element by adjoining a square root of

(a − b + c − d)2.

Galois’s assertion that “in this way one finds the

solution of Descartes or that of Euler” is generous

to Descartes and Euler. According to Neumann

([6], p. 163), it is unclear exactly which versions

of which methods Galois is referring to, but the

method of solving quartic equations that Euler

presents in [4], calling it “new”, is the following.

Normalize the given quartic to make a+b+ c+
d = 0, say it is x4 − Ax2 − Bx− C. First solve the

cubic z3− A
2
z2 + (A2

16
+ C

4
)z − B2

64
= 0, say the roots

are p, q, and r . The roots of the given quartic are√
p+√q +√r when the signs of the square roots

are correctly chosen.

Elegant and effective as Euler’s explanation of

his method is, he does not show the underlying

principle in the way that Galois does. When the

quartic is normalized as Euler instructs, the cubic

is in fact the one whose roots are the three

quantities p = 1
16
(a + b − c − d)2, q = 1

16
(a − b +

c − d)2, and r = 1
16
(a − b − c + d)2. The first

step in the solution of this cubic is to adjoin a

square root of (p − q)2(p − r)2(q − r)2, which,

when it is expressed in terms of a, b, c, and d,

can be found to be 212(a−b)2(a− c)2(a−d)2(b−
c)2(b−d)2(c−d)2. Thus Galois’s first step, which

is to adjoin a square root of the rational quantity

(a − b)2(a − c)2(a − d)2(b − c)2(b − d)2(c − d)2,

accomplishes the same objective as Euler’s first

step, which is to adjoin a square root of the

rational quantity (p−q)2(p−r)2(q−r)2. Similarly,

Galois’s second step, which is to adjoin a cube

root of (p + αq + α2r)3, accomplishes the same

objective as Euler’s second step, namely, to adjoin

a quantity p or q or r that is invariant under

the subgroup of index 3 in the group of even

permutations of the four roots of the quartic

August 2012 Notices of the AMS 921



but not invariant under the whole group, because

the whole group permutes p, q, and r cyclically.

Finally, as Galois charitably points out, although

Euler extracts three square roots
√
p,
√
q, and

√
r ,

only two are in fact necessary; this follows from

the observation that, in Euler’s notation,
√
pqr = B

8

is rational (this quantity is
√
h in Euler), so

√
r is

known once
√
p and

√
q are adjoined. Combining√

p = 1
4
(a+ b − c − d), √q = 1

4
(a − b + c − d) and√

r = 1
4(a − b − c + d) with 0 = 1

4(a + b + c + d)
then shows that a = √p + √q + √r and that the

four roots are ±√p±√q±√r when the sign of
√
r

is determined by the first two signs. (The rule is

that the number of minuses is even.) In short, the

steps are essentially the same in the two methods,

but Galois’s steps are dictated in a simple way

by his Proposition 5 and they do not require the

normalization a+ b + c + d = 0.

Proposition 6

It is somewhat surprising that Galois found worthy

of special mention the lemma that an irreducible
equation of prime degree cannot become reducible
by the adjunction of a radical, especially so be-

cause his formulation is inaccurate. His proof

and the final statement in his discussion of the

proposition make clear, however, that he meant

to say that an adjunction of a radical can reduce

an irreducible polynomial of prime degree only if

it factors it into linear factors, because a radical

adjunction necessarily factors G0(X) into factors

of equal degree (provided, as Galois assumes, that

the radical is of prime degree p and that the

pth roots of unity have already been adjoined) by

Propositions 2 and 3.

Proposition 7

Proposition 7 is the second “problem” in the

memoir, and it is in fact an elaboration of the

first “problem”, namely, Proposition 5, which was

to determine whether a given equation [poly-

nomial] was solvable by radicals. Proposition 7

is the special case in which the polynomial to

be solved has prime degree. Galois’s answer is

that an irreducible polynomial of prime degree p
is solvable by radicals if and only if its roots xk can
be ordered in such a way that the substitutions of
the roots in its group all have the form xk ֏ xak+b
for some integers a and b, where it is understood

that subscripts on the roots are to be interpreted

as integers mod p.

The lemma of Proposition 6 implies by a fairly

easy argument that the next-to-last subgroup in

the reductions, the one before the subgroup con-

taining just one element is reached, must be cyclic

of order p. Since Proposition 5 states that the se-

quence of reductions can only include reductions

to normal subgroups, Proposition 7 follows from:

Let Sp be the group of all permutations of the inte-

gers mod p, and let Cp be the subgroup generated

by the permutation k ֏ k + 1. The normalizer of
Cp in Sp is the group of permutations of the form
k֏ ak+b. The proof is an exercise in elementary

group theory; Galois of course proves it using his

own terminology.

At the end of the memoir, following Proposi-

tion 8, Galois gave what he labeled an “Example

of Theorem VII” (even though Proposition 7 is a

problem, not a theorem). It is a 20×5 array show-

ing, in Galois’s format, the largest possible group

of a solvable quintic. Since he already stated in

Proposition 1 that the general quintic has a group

of order 120, it follows—although Galois makes

no mention of it—that the general quintic is not

solvable by radicals. (Note that the simplicity of

the alternating group A5, so often invoked in

textbook proofs of this fact, is not needed.)

Questions about Proposition 7

I am unable to explain several points in the latter

part of Proposition 7.

First, I am puzzled by his reference to “the

method of M. Gauss”, which he invokes to con-

clude that the quantities he denotesX1,Xa,Xa2 , . . .

can be found [by radical adjunctions] even though

the desired conclusion follows immediately from

his own Proposition 5. (A nontrivial cyclic group

contains a subgroup of prime index, and every

subgroup of a cyclic group is both normal and

cyclic.) He is referring, almost certainly, to Sec-

tion 7 of the Disquisitiones Arithmeticae, where

Gauss treats in detail the algebraic solution of

xn−1, primarily for prime values of n. To modern

readers, it is natural to regard Gauss’s solution of

xn − 1 = 0 as an application of Galois theory pub-

lished ten years before Galois was born, but Galois

himself, instead of using his own Proposition 5

to prove that a cyclic equation is solvable, cites

Gauss—a reference that appears to call for some

nontrivial intermediate steps, namely, the reduc-

tion of a cyclic equation to a binomial equation

and the reduction of a general binomial equation

to xp − 1 = 0 for prime p. One explanation of this

choice on Galois’s part would be that he was ac-

knowledging having profited from reading Gauss’s

treatment of this important special case of the

solution of algebraic equations. Another would be

that he hoped to win approval of his work from

Gauss, who at the time was in his early fifties and

widely regarded as the prince of mathematicians.

(In his famous testamentary letter, Galois would

ask his friend Chevalier to bring his work to the

attention of Gauss and Jacobi.)

Secondly, I am unable to reconstruct what

Galois had in mind when he wrote, “Therefore,
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etc.” at the end of this argument, as though

the rest of the argument were routine. He has

proved that the Xai he defines can be expressed

in terms of radicals, but his goal is to prove

that the xi can be expressed in terms of radicals.

Most probably, he intended to use the formula

x = 1
n
(c + n

√
X1 + n

√
Xa + ·· · + n

√
Xan−2), where c is

the sum of the roots, but this formula, instead

of representing the n desired roots of the given

equation, represents nn−1 quantities, only n of

which are roots, because there are n choices

for each of the nth roots. His assertion that

any f (x) whose group has the specified form

is solvable by radicals is correct, but his proof

seems inadequate. What is needed is a formula to

connect the choices of nth roots in the formula

x = 1
n
(c + n

√
X1 + n

√
Xa + ·· · n

√
Xan−2) so that it

describes just the n required roots. Galois may

well have had an answer to this question, but

no answer is apparent. (Also, he may have been

satisfied with a formula involving radicals that

included the n roots in a set of nn−1 possibilities,

but I am inclined to doubt it.)

Finally, I am unsure what Galois means by “the

method that would have to be used in practice.”

His formula
∏
(Xai − X) defines a polynomial

F(X) of degree n − 1 with coefficients in the

splitting field of the given polynomial. It has

(n−2)! conjugates under the action of Sn, because

n(n−1) permutations of the form xk ֏ xak+b leave

it unchanged. Let these conjugates be F(i)(X) for

i = 1, 2, . . . , (n − 2)!. The product G(X,Y) =∏
(Y − F(i)(X)) over all F(i)(X) is a polynomial in

two variables with coefficients in K. If the original

polynomial is solvable, then there is a j for which

F(j)(X) has coefficients in K; the corresponding

factor Y − F(i)(X) of G(X,Y) has coefficients in

K, so G(X,Y) has a root Y = F(j)(X) in K for

any value of X in K. Galois seems to say that this

necessary condition is also sufficient and that “one

knows how to” determine whether it is satisfied.

Proposition 8

The final proposition is again a theorem, namely,

the corollary of Proposition 7 that results when

one notes that the groups of the form described by

Proposition 7 leave at most one root fixed unless

they leave all roots fixed or, what is the same,

unless they consist of the identity alone.

This theorem, stating that an irreducible poly-
nomial of prime degree is solvable by radicals if
and only if all roots can be expressed rationally in
terms of any two of them, will doubtless seem pe-

culiar to 21st-century readers. It seemed peculiar

as well to the referees Lacroix and Poisson, who

recommended the rejection of Galois’s memoir,

because, as is natural, they wanted a solvability cri-

terion that could be applied to a given polynomial.

Its advantage, it seems to me, is that it requires no

group theory or field theory, and no special con-

structions, for its statement. If one knows what it

means for a polynomial to be solvable by radicals,

one knows more than enough to understand what

it means to say that all roots can be expressed

rationally in terms of any two. I believe that is why

Galois chose it as his concluding proposition.

Again, Study the Masters

The introduction to my 1974 book Riemann’s Zeta
Function was an exhortation to “Read the classics!”

A few years later I discovered Niels Henrik Abel’s

remark that “It appears to me that if one wants

to make progress in mathematics one should

study the masters and not the pupils,” which then

became my constant refrain. Abel’s contrast of

“masters” to “pupils” is an important addition to

the message. “Read the classics” doesn’t just mean

read good texts; it means read the texts that gave

birth to the subjects or gave them their most vivid

statements—those written by the “masters”—not

the ones written by later “pupils”, who themselves

learned the ideas from the masters and are trying

to make presentations that are more accessible or

that conform to newer styles.

I have tried to show here that the ideas ex-

pressed by what is now called the fundamental

theorem of Galois theory are all contained, in a

very effective but terse form, in the first few pages

of Galois’s First Memoir. In the course of the writ-

ing, I have been forcefully reminded of the extent

to which Galois is the master and I the pupil.

Once again, I advise students to Study the
masters! Thanks to Peter Neumann’s meticulous

reexamination of all of Galois’s works—not just of

the First Memoir—many more students will now

be able to do so.
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